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Abstract-The consequences of the occurrence of convection when exothermic chemical reactions take 
place in a gaseous medium enclosed in a horizontal circular cylinder are investigated by means of a numerical 
integration of the governing fluid-dynamical equations using an A.D.I. technique. The thermal effects of 
the reaction are represented by a distribution of heat sources with an Arrhenian temperature dependence 
but the consumption of reactants during the reaction is ignored. The ignition limit 6,, is found to be a 
strongly increasing function of the Rayleigh number and the temperature distributions in the vessel are no 
longer symmetrical about the centre when convection occurs. Good qualitative agreement with the observa- 

tions of convective effects in experiments using vessels of other geometries is obtained. 

NOMENCLATURE 0, 
pre-exponential factor in Arrhenius’ law; 
activation energy of reaction; 
acceleration due to gravity; 
radius of cylindrical vessel; 
dimensionless pressure; 
Prandtl number, V/K; 
exothermicity of reaction; 
dimensionless polar co-ordinates; 
gas constant; 
Rayleigh number; 
temperature; 
dimensionless velocity; 
unit vector in vertical direction. 

Superscripts 

(s), 

Greek symbols 

a, coefficient of cubical expansion of reacting 

gas; 
P, R T,IE ; 
6, QEAl’ exp (- EjRTJfrcRT~; 
6 CR’ critical value of 6 for onset of explosion; 

6 thermal diffusivity of reacting gas; 

v, kinematic viscosity of reacting gas; 

P? density of reacting gas; 

49 dimensionless temperature; 

*9 dimensionless stream function; 

w, dimensionless vorticity. 

Subscripts 
i, j, n, value at ith grid point in r-direction and 

jth in &direction at the nth time-step; 

THE CLASSICAL theory of thermal ignition developed 
by Frank-Kamenetskii [l] describes exothermically 
reacting systems in which the heat transfer mechanism 
is purely conductive. Steady-state regimes in vessels 
of three different geometries are discussed in [l]. The 
three cases are those in which the reacting medium is 
confined (i) between two infinite horizontal plates, 
(ii) inside a horizontal circular cylinder, and (iii) inside 
a sphere. Although later authors [2, 31 have been 
able to improve upon and extend the basic theory and, 
using numerical techniques, to retain the time- 
dependence of the model, which Frank-Kamenetskii 
was forced to relinquish, all have continued to assume 
that heat transfer takes place by conduction alone. 
However, of the temperature distributions predicted 
in [l], which are in each case symmetrical about the 
centre of the vessel, only that for the case (i) can exist 
in equilibrium if the reacting medium is a fluid, since 
those for the cylindrical and spherical cases imply the 
existence of temperature gradients perpendicular to 
the direction of the gravity vector. In these cases 
convection should be expected to occur. 

* Present address: Building Research Station, Garston, 
Watford, England. 

Experimental evidence of convective effects has 
been reported by several authors. Tyler [4] and 
Ashmore, Tyler and Wesley [S] observed asymmetries 
in the temperature distributions in reacting systems 

contained in spherical vessels, with the maxima 
occurring significantly above, rather than at, the 

value at wall of vessel. 

denotes sth iterate. 

1. INTRODUCTION 
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centre of the vessel for sufficiently large values of the 
Rayleigh number. This is the dimensionless parameter 
characterizing the relative importance of conduction 

and convection processes. Using a parallel-plate 
vessel. Merzhanov and Shtessel [6J monitored the 
increase with the Rayleigh number of the critical 

value 6,, of Frank-Kamenetskii’s parameter 6 divid- 

ing explosive regimes (A > 6,,) from steady-state 

regimes (ci < A&. The parameter 6 is a measure of the 

ratio of the rate of heat production by the chemical 
reaction and the rate at which heat is conducted 

through the reacting medium. Ultimately. whether or 
not the system explodes is determined by the balance 
between the rate of production of heat by the reaction 

and the rate ofremoval of heat from the system by con- 

duction through the walls of the enclosing vessel. The 
increase of the critical value of 6 with the Rayleigh 

number observed in [6] is due to the enhancement of 
the transfer of heat through the reacting medium to 

the walls when convection occurs in addition to con- 

duction. thus allowing a higher rate of heat production 
to be accommodated without an explosion. 

The purely conductive theories of [l&3] are 
governed by the diffusion equation for the temperature 

field, with an internal heat source term whose tem- 
perature dependence is given by Arrhenius’ law to 

represent the thermal effects of the reaction. Here, 
further terms describing the convective heat transfer- 

processes are incorporated, so that two more equa- 

tions. the continuity and momentum equations 
governing the velocity field. are required to complete 
the specification of the problem. No details of the 

chemical kinetics are included: the combustion 

reaction is assumed to be of zero order. Thus the 

consumption of reactants during the course of the 
reaction is ignored. The system of governing equations 
is considered in detail in Section 2. Jones [7] used 
these equations in estimating the lowest values of the 
Rayleigh number at which convective effects are 

hkely to be significant in the parallel-plate vessel of 
case (i) by an examination of the stability of Frank- 

Kamenetskii’s solutions to small perturbations of 
the temperature and velocity fields. 

The importance of convection in the cylindrical 
case (ii) is investigated in this paper by a less restricted 
technique. namely the numerical integration of the 
full governing equations. A so-called ‘split-operator’ 
finite-difference method (essentially the alternating- 
direction implicit method of Peaceman and Rachford 
181) is employed to advance the solutions step-by-step 
in time from the imposed initial conditions. The 
motion of the reacting gas is assumed to be two- 
dimensional and the spatial finite-difference mesh is 
based on the natural polar co-ordinate system for the 

cylinder. The non-linearities of the governing equa- 

tions are treated by means of iterative procedures at 

each time-step. A more detailed account of the 
numerical method is to be found in Section 3 

By performing the integration for several cumhina- 

tions of values of 6 and the Rayleigh number Rtr and 
observing the nature of the resulting solutions. that 

is whether the reaction proceeds to ;I steady-state 01 
to an explosion, the dependence of the critical value 

6,, of the parameter fi on the Raylei~h number I\ 

delimlted. It is found that 6,, IS a strongly Increasing 

function of Rtr. For example, a Rayleigh number ot 
order 104, which is attainable in experimental sy<tem\. 

may lead to a 2OOC300 per cent increase m ~i(.~ com- 
pared with the value predicted by Frank-K:imenetskii‘s 

theory. 
I‘he maxima of the temperature distributions 

calculated here are displaced from the ccntrc towards 
the top of the vessel, in agreement with the experi- 

mental observations of [4] and [5]. This displacement 

is associated with an upwelling of warm fiuid near 

the centre of the vessel. In Section 4 the details of the 
results of the numerical integrations are presented 
and their relationship with the observations of 
experimental systems discussed. 

2. ‘rHF GOVERNING EQI:4TlOVS 

In formulating the equations governing the d!- 
namics and thermodynamics of the chemically 
reacting fluid system studied here, we represent the 
thermal effects of the reaction by a spatial distribution 

of heat sources within the fluid. Details ofthe chemical 
kinetics of the reaction are not taken into account. 
Further, variations of the concentrations of the 

reactants during the reaction. and their convective 
and diffusive motions are also ignored, 4s a first 
approximation it is reasonable to neglect the effects 
of reactant consumption since previous calculation- 

(see, for example, 131) suggest that frequently onI\ 
of the order of 5 per cent of the reactants are consumed 
during the period in which the system reaches it\ 
maximum temperature. If the reaction has exo- 
thermicity Q. and if its rate is determined by a reacticin 
step of activation energy E, then using Arrhenius’ law 
for the temperature dependence of the reaction rate 
we find that the density 4 of heal sources to bc 

included in the energy equation is given hv 

r/ = QA exp ( ~~ 8,‘R Ti j (1; 

where A is a constant, R is the gas constant and I I:, 
the temperature of the gas. 

The inclusion in the energy equatlpn of terms 
describing convective heat transfer processes requires 
the introduction of the momentum and continuitv 
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equations for the fluid velocity in order to complete 
the system of governing equations. Here we assume 
that the reacting medium may be considered to be a 
Newtonian fluid whose motion is laminar. In deriving 
the governing equations we make the Boussinesq 
approximation in which the density p of the fluid 
depends on the temperature according to 

P - p. = -ap,(T - To), (2) 

where a is the coefficient of cubical expansion of the 
fluid and p. = p(T,), in the buoyancy force term of 
the momentum equation, but the density and all 
other physical parameters of the fluid are assumed to 
be constant elsewhere. This approximation may be 
justified provided that the temperature T satisfies 

JT - To] e To, (3) 

everywhere if To is an absolute temperature typical 
of the system, here taken to be the wall temperature. 
If, further, we have 

u’/c2 < 1 T - T,J/T,, (4) 

where u is a velocity typical of the convective motion 
of the reacting medium and c is the speed of sound 
within the medium, then the dissipation term in the 
energy equation may be neglected. 

The governing equations derived in this way may 
be written in dimensionless form in the following 
manner. Distances are non-dimensionalised with 
respect to the radius.1 of the vessel, times are measured 
in units of l’f~, velocities in units of v/l and the 
pressure in units of ~cvp,/l~, where v is the kinematic 
viscosity 6f the reacting medium and K its thermal 
diffusivity. We adopt Frank-Kamenetskii’s dimen- 
sionless temperature 4 defined by 

4 = j&v - 7-O). 
0 

Then the continuity, momentum and energy equa- 
tions may be written 

v.u = 0, (6) 

$ + Pr(u . V) u = -VP + PrV’u + Rm#, (7) 

and 

X + Pr(u. V) I#J = V24 + S exp {Ml + 84)), (8) 

respectively, where u is the fluid velocity and z^ is a unit 
vector in the vertical direction. The dimensionless 
parameters characterising the system are the Rayleigh 
number 

Ra = g13aRTf$cvE, (9) 

the Prandtl number 

Pr = V/K, 

Frank-Kamenetskii’s parameter 

6 = QEAl’ exp (- EIRT,)~KRT,$ 

and 

(10) 

(11) 

/l = RT,/E. (12) 

We shall take B = 0 throughout our calculations, 
although this is not necessitated by the method 
employed. Parks [9] has shown that the critical 
condition for explosion varies by at most about 5 
per cent from its value for /l = 0 when p is less than 
0.05, values above which are not appropriate to gas- 
phase reactions. 

The parabolic system of governing equations 
(6H8) is solved subject to initial conditions of the form 

4 = ANIT and u = u,n,r at t = 0, (13) 

where r&r and “INIT are functions of position. The 
boundary condition imposed on the temperature of 
the reacting gas at the walls of the vessel is that it 
should remain equal to the temperature of the walls, 
that is 

+=O on r=l for all t > 0. (14) 

The velocity held within the vessel is require to satisfy 
the usual condition for a viscous fluid at a solid wall, 
namely 

L=O on r=l for all t > 0. (15) 

3. THE NUMERICAL METHOD 

In this Section we describe the finite-difference 
method used to obtain solutions of the governing 
equations (6H8), subject to the initial conditions (13) 
and the boundary conditions (14) and (15). The vessel 
geometry considered is the horizontal circular cylinder 
of case (ii) of Frank-Kamenetskii’s work. We assume 
that the fluid motion is confined to vertical planes 
perpendicular to the axis of the cylinder, and that, in 
addition, this two-dimensional motion is symmetric 
about the vertical diameter. Hence solutions are 
sought in the semicircular region shown in Fig. 1. 
The natural (dimensionless) polar co-ordinates (r, 0) 
with origin at the centre of the vessel are employed. 

It is convenient to introduce the stream function $ 
satisfying 

1 ati 
u, =-_ and a* 

r 86 
u0 = - -, 

?r (16) 

where u, and u, are the polar components of u, so that 
the continuity equation (6) is identically satisfied. The 
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vorticity w defined by 

w=vxu, 

D. R. JONES 

and it is convenient to choose the constant in (21) to 

(17) be zero. The assumption of symmetry about the 
vertical diameter leads to the conditions 

has only one non-zero component. w say, for the two- 
dimensional motions considered here, namely the 

/=I 

At centre 
JI=w=o 

'#Jdetermmed 
by equatlan(20) 

I) = m = 0. 122) 

‘9 

W=O 

$$= 0 but 
w unknown aprior/ 

/‘IV 

FIG. I. The integration region. 

component parallel to the axis of the cylinder. From 

(16) and (17) it follows that II, and o are related by 

In terms of $ and w the remaining equations (7) and 

(8) may be written 

Pr aoa+ 3, ax-T%ar ( ao a* 

> 

= Pr[!-i(rtJf) + $g] 

_ & ( sin@!?!!! + ‘Osea’ __- 
& > r ae ’ (19) 

and 

=$g r$! +f$-+6exp[4/(l +/W)],WV 
i > 

respectively, where the pressure has been eliminated 
by applying the operator V x to equation (7). 

The boundary condition (15) on the velocity field 
becomes 

* = constant, 3~0 on r=l 
8r 

for all t 2 0, (21) 

and 

C?& 
-_=O 
ae 1 

(23) 

on 0 = 0,~ for all t > 0. 

Finite-difference methods are employed to obtain 

solutions of the governing equations in the form 
(18~(20), subject to the boundary conditions (14) and 

(21)-(23), and a variety of initial conditions of the 
form (13). The non-linearity of the equations (19) and 
(20) necessitates the use at each time-step of an 

iterative technique, each stage of which involves the 
solution of Iinear problems only. The method is 
described in detail in the summary of the integration 
procedure set out below. 

The spatial mesh chosen is illustrated in Fig. 1. 
It is that naturally suggested by the use of polar 
co-ordinates and allows the conditions at the outer 
boundary(r = 1)andon thelineofsymmetry(0 = 0. n) 
to be incorporated conveniently into the solution 
scheme, although special consideration of the centre 
of the vessel (r = 0) is required. 

At each stage of the iterative process, the alternating 
direction implicit (A.D.I.) method first proposed by 
Peaceman and Rachford [S] is employed in the 
solution of (19) and (20). In using this method, each 
time-step, At = t,+ , - t, say, is divided into two 

halves. For the first half time-step, in which the 
solutions are advanced from t, to t,++ derivatives 
with respect to r are represented by finite-difference 
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analogues evaluated at t.++ whereas those with 
respect to 0 are evaluated at t, where the solutions are 
already known. In advancing from t,++ to tn+i the 
procedure is reversed, with &derivatives evaluated at 
t “+I but r-derivatives at tn++ where the values are 
known from the results of the first half time-step. 
Backward differences are utilised in the representation 
of the time derivatives at each half time-step and space 
derivatives are represented by central differences. 
This leads to a procedure which is, overall, uncondi- 
tionally stable and has truncation errors of second 
order with respect to both the time and space mesh 
sizes. The principal advantage of such a method is, 
of course, that the matrix of coefficients which it yields 
at each half time-step is tridiagonal, and efficient 
algorithms exist for the solution of systems of this kind. 

Although the set of boundary conditions (14) and 
(15) specified in the original statement of the problem 
under discussion is complete, the reformulation of the 
problem in terms of the stream function and vorticity, 
and the assumption of symmetry about the vertical 
diameter leave incompletp the set of conditions 
required on the boundary of the semicircular region 
in which the numerical integration is to be performed, 
as Fig. 1 shows. Two conditions, the vorticity at the 
solid outer boundary, and the temperature at the 
centre of the vessel, are not known LI priori and must 
be determined during the course of the calculation. 
The difficulty associated with the boundary vorticity 
is a familiar one in fluid-dynamical calculations of 
this kind, and the technique adopted for its resolution 
is described in the summary below. 

The second deficiency in the set of conditions is 
much more unusual. The A.D.I. method employed 
to find the temperature at grid points throughout the 
interior of the region of integration requires prior 
knowledge of the temperature at the centre of the 
vessel. A subsidiary calculation to obtain estimates 
of the centre temperature from equation (20) using 
previous iterates for the values of C$ at neighbouring 
grid points, is incorporated into the overall iterative 
procedure. 

We can now summarize the main steps of the 
numerical solution procedure employed to advance 
the solutions from, say, t, to tn+,. Values of the 
temperature C$ at the ith mesh point in the r-direction 
and the jth mesh point in the &direction at time t, 
are denoted by c$~, j,n and similar notation is used for 
values of the other field variables. The steps in the 
iterative procedure are as follows: 

(a) Using the current iterates for tii, j,n+f (or 
during the first iteration, values of tii, j,J, the known 
values 4i, j, n and an estimate of the temperature at 
the centre at time t,++ the first half step of the A.D.I. 

method is applied to equation (20) and the boundary 
conditions (14) and (23) to yield values for 4i, j,,+t at 
all points except the centre. 

(b) Values of oi, j,n+f are similarly obtained from 
equation (19) and the boundary condition (22) at all 
points except those on the outer boundary r = 1. The 
values at these points are required as boundary 
conditions for the A.D.I. method. The current 
iterates calculated in step (g) of the previous iteration 
are utilised, except during the first iteration, when the 
values at t, are employed. 

(c) The time-step for equation (20) begun in (a) is 
completed to yield +i, j, n+ 1 except at the centre. 

(d) Similarly, the time-step for (19) begun in (b) is 
completed, yielding wi, j,.+ 1 except on r = 1. 

(e) If xc”) denotes the values of $i j n + 1 found in (c), 
or ofoi j n+l found in (d) during the current iteration, 
and x cs’ 6 the corresponding values in the preceding 
iteration, then xc”) is replaced by the weighted value 
defined by 

a$S) + (1 - 0) $-I), (24) 

where @75 < cr < 0.95. This step was found to be 
essential for the convergence of the iteration procedure. 

(f) The right-hand side of equation (18) is evaluated 
using the values wi, j,,+l thus obtained, and the 
equation is then solved by point over-relaxation to 
yield values $i, j, n + 1 at interior mesh points. The 
streamfunction is, of course, known to satisfy $ = 0 
for all times on the boundary of the region of integra- 
tion by equations (21) and (22). The optimum value 
of the over-relaxation parameter 1 was here found to 
lie in the range 1.70 < 1 < 1.78. The values of 

*i,j,n+* required in steps (a) and (b) may now be 
estimated from $i, j, n and $i, j, “+ r. 

(g) The vcrticity wM, j,n+ 1, that is at points on the 
solid outer boundary r = 1, is calculated from the 
central-difference analogue of (18) applicable there, 
namely 

w M,j,n+l = -2~M-l,j,n+l/(8r)2 (25) 

where Sr is the radial mesh size. Smoothing of these 
boundary vorticity values as in (24) was also necessary. 
The values w~,~,_++ required in (bj may now be 
estimated from wM, j,. and wy j “+ 1. 9 , 

(h) Values of the temperature at the centre at times 
t “++ and t, required in steps (at(d) are found by 
incorporating the values of & j,.+t obtained in (a) 

and of6i,j,“+i obtained from (c) and (e) in the finite- 
difference analogue of (20) at the centre. During the 
first iteration, before new estimates may be found in 
this way, the centre temperature at time t, is employed. 

(i) The iteration cycle is repeated, beginning at step 
(a) until the maxima of the differences at each mesh 
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point between successive iterates for each of the fields 
4,li/ and 01 are less than prescribed tolerances. In the 
present work these were chosen to give nominally at 
least three significant figures in the solutions. 

Steps (b) and (d) involve implicit linearisations of 

(19) since w and + are there regarded as independent, 
though they are related by equation (18). The final 
non-linear term in (20) was treated by means of the 

followingquasi-linearisationin theiterativeprocedure. 
At the sth stage, when @- *) was known and @‘) was 
being sought, the expression 

e@‘“’ 2 e,$“m 1) [l + (4’“’ - f#+- “3, (26) 

which is correct to second order in (+(s) - @- ‘I) was 
employed, since here p was taken to be zero. In prac- 
tice this process and that associated with the centre 
temperature were found to converge somewhat more 
rapidly than that resulting from the implicit linearisa- 

tion of equation (19). In other words, the temperature 
(6 converges to its tinal value at each time-step more 

rapidly than do o and $. 
In the calculations described above, the spatial 

finite-difference mesh had 15 divisions in the r- 

direction and 20 in the &direction. The calculations 

were commenced using a time-step of 0.0025, but 

this was very quickly increased to @Ol and eventually 
to 0.05 as steady-state solutions were approached. 

The extra computational effort required to include 
difference corrections in the present calculations was 

felt to be unjustified, since a comparison of the results 
obtained using the above mesh and those obtained 

for selected cases with the mesh lengths halved 
suggests that the principal features of the results 
would not be affected by more than about 5 per cent 

by their inclusion. 

noting the nature of the resulting solutions. As 
described in Section 1, an explosion ensues when a 
net accumulation of heat in the system takes place as 
a result of heat being produced at a greater rate by 
the chemical reaction than that at which it can be 
removed by conduction through the walls of the 
vessel. The Arrhenian heat source term (1) in OUI 

model reflects the self-heating properties of systems 

in which an exothermic chemical reaction occurs: as 
the temperature 7’ increases, the rate of production 

of heat increases rapidly and this may give rise to 
a self-accelerating process of heat production tetm- 

inating in an explosion if the heat transfer processes 
are unable to remove the heat sufficiently quickly. 

Once an upward inflexion in the temperature versus 
time curve has occurred it is observed that an ex- 
plosion does indeed always follow. When there is 

no such inflexion, the system proceeds to a steady 
state. Thus we have a criterion which allows us to 
divide the 6-Ra plane into two regions, corresponding 

to explosive and steady-state regimes. The critical 
curve separating the two regions which is obtained 
when the initial conditions (13) are given by 

4J 1Nrr = -- 0.1 cos (w/2) and uIN,.r = 0, (27) 

is shown in Fig. 2. 

5 

5.-_6- 
Calculations were performed for various combina- 

tions of parameters in the ranges 0 d Ra < 1.1 x lo4 
and 2.0 < 6 < 5.0. The lowest value of 6 considered 
was thus the critical value for the onset of explosion 
when p = 0 according to Frank-Kamenetskii’s purely 
conductive theory. The Prandtl number was taken 
to be unity throughout, a value representative of the 
reacting gas mixtures often used in experimental 

systems. (See note added in proof.) As indicated in 
Section 2. p was set equal to zero. 

3 

I/ 

2F I _.~~-._i._. 
2000 4000 6000 8000 IOflOO 

RO 

L-K;. 1. Vanat~on of the ignition limit OcR ulth the Kayleieh 
number. 

4. RESULTS AND DISCUSSION 

One of the principal aims of this investigation is to 
determine the dependence on the Rayleigh number of 
the critical value 6,, of Frank-Kamenetskii’s para- 
meter 6. This was achieved by performing the integra- 
tion procedure described in Section 3 for a large 

It is clear that major modifications of the results 
of the classical theory may be required when account 
is taken of convective effects. If convection occurs in 
addition to conduction, the transfer of heat through 
the gaseous medium to the walls is improved, and 

thus larger values of 6, corresponding to higher rates 
of heat production by the reaction, may be accom- 
modated without explosion. Since Rayleigh numbers 
of 2000 or more may easily be achieved in experi- 

number of combinations of values of S and Ra and mental situations, we see from Fig. 2 that the critical 
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FIG. 3. Variation of the centre temperature with time when 
6 = 3.0 and Ra = 103. Initial conditions of the form (28) 

with values of C shown. 

05 

f 
FIG. 4. Variation of the centre temperature with time when 
6 = 3.0 and Ka = 4 x 103. Initial conditions of the form (28) 

with values of C shown. 

values of 6 encountered may well exceed the Frank- 

Kamenetskii value by over 50 per cent. The values of 
&.,@a) shown in Fig. 2 have been determined to 
within less than 10 per cent, which is sufficiently 
accurate for the purposes of comparison with 
experimental observations. There is no reason why 
in principle the critical conditions should not be 
determined much more accurately, but the computing 
time required to achieve this was felt to be prohibitive. 
The criterion for criticality used here is not, of course, 
the same as that employed by Frank-Kamenetskii, 
who sought the limiting value of S for which solutions 
of the steady-state diffusion equation were available. 
However, when the Rayleigh number was set to zero 
in the present calculations, to correspond to the case 
of purely conductive heat transfer, the critical value 
obtained was 2.01, compared with Frank-Kamenet- 
skii’s value of 2 00. 

The use of initial conditions other than those defined 
by (27) has negligible effect on the critical curve of 
Fig. 2, provided they are not sufliciently extreme to 
induce an explosion immediately. Naturally, how- 
ever, the transient behaviour of the solutions will vary 
with the initial conditions chosen. This is illustrated 
in Fig. 3, where the variation of the temperature at 
the centre of the cylinder with time is plotted for a 
system in the explosive region, and in Fig. 4, in which 
the transient behaviour of a non-explosive regime is 
shown. In both cases the initial conditions imposed 
are of the form 

4 ,N,T = C cos (m/2) and ulNIT = 0, (28) 

where C lies in the range - 0.5 < c < 0.5. The integra- 
tions were terminated in explosive regimes when the 
integration procedure no longer converged for a 
time-step of length 0.01 and in steady-state regimes 

HMTVol. 17, No. 1-B 
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when solutions at successive time-steps 0.05 apart 

differed by less than 0.5 per cent. 
Figure 5 shows the development of the maximum 

temperature in the system with time, from initial 
conditions defined bq 

6, ,N,, = 0.1 cos (nr/2) and ulNIT = 0, (29) 

for several values of the Rayleigh number. some too 
small to prevent an explosion at the given value of ii. 

and some sufficiently large to allow a steady-state 

regime to be attained. The greatest steady maximum 

P-I!,. 5. Variation of the maxnnum temperature with time 
when 6 = 3.0 at the values of Ra shown. Initial conditions 

of the form (29). 

temperature approached in the steady-state regimes 
is larger than that, 4 = 1.37, predicted by the purely 
conductive theory. This reflects the possibility, when 

convection occurs, of steady-state regimes for values 
of 6 exceeding the critical value of the classical theory. 

This is confirmed by the observations of Archer and 

Tyler [lo]. . 

More details of the development of the temperature 
field in one of the cases (Ru = 4000) represented m 
Fig. 5 are shown in the sequence of temperature 
profiles across the vertical diameter displayed in Fig. h. 
The temperature withm the vessel ~ncrcascx steadliy 

with time and the maximum moves up I‘l-om !th initial 
central position accompanying an upaclling of hoi 

gas in the ccntre of the vessel. A simikrr displacemcnr 

of the temperature maximum has been obacrhed K 

[4] and [51. 
When the initial conditions (20) are replaced by 1’7) 

the transient behaviour is much more cc~mplicated 

This is illustrated by the temperature profiles shown 

in Fig. 7 and in the temperature and stream functic,;-i 
distributions of Fig. 8, Initially heat i5 :Ibsorhed from 

the surroundings. Nonetheless. it is mainly a\ a result 
of the fact that the rate of heat generation by th,, 
reaction i< a strongly increasing ftmctioll of tzm- 

perature that temperature maxima a~-i: quickly c’\-. 
tablished close to the walls of the vessel. Consequent I>. 
the reacting gas rises in the relativeI> warm lapels 
near to the walls and falls near the icntrc of Ihc 
cylinder. where the gas is cooler. Thii; accounts for 

the temperature and stream function distribution; 
shobn in Fig. X(i). As more heat is rclcascd by the 

reaction the temperature maxima nio\c inwards. 50 

that the region near the ccntrc of thr: vessel and thy 
layers near the walls are both cooler than the inter- 
vening region. Then the warmer fluid in \hc Intel- 
mediate region rises whilst the cooler fluid nc;tI- th? 
walls and in the centre of the vessel falls. leading to rbz 

double circulation pattern shown in Fig. 8(b)(iij. ‘The 
outer circulation grows at the expcn~c of the iliner 

flow as the accumulation of heat produced bq Ihe 
reaction near the centrc cause\ the :cmperaturc t!~crc 

06 
8 

O-6 

(Top) 

F‘rc;. 6. Temperature profiles across the vertical diameter at 
the times shown when 6 = 3.0 and 1(u : 4 A IO’. Initial 

conditions of the form (291. 
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-02 I I 
~1 (Bottom) PO 

I 

(Top) r=t 

B*n 3=0 

FIG. 7. Temperature profiles across the vertical diameter at 
the times shown when 6 = 3.0 and Ita = 10’. Initial condi- 

tions of the form (27). 

to rise. Eventually the entire semicircular region is more rapidly in the centre of the vessel than it can be 
occupied by the steady-state circulation, with an removed by the combined conduction and convection 
upwelling of hot fluid in the centre of the vessel and processes. 
cooler fluid falling near the walls. A similar develop- There is excellent qualitative agreement between 
ment of the velocity field takes place when the system the results presented here for a cylindrical geometry 
is in an explosive regime but then heat is produced and the observations made by Archer and Tyler [lo] 

0042 

(b)(I) 

0 16 

~ 

8 

054 
4 * 

-0.25 

0.25 

1.99 

;j 

~ 

I.5 

I.0 

(b)K!) (b)(lIl) 

FIG. 8. (a) Temperature distributions and (b) streamfunction 
distributions when 6 = 3.0 and Ra = lo4 at times (i) 0.03 
(ii) 0.07 (iii) 0.1 (iv) 0.15 (v) 0;237tritial conditions of the form 

r 

(b) (KY) 
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of experiments in spherlcal apparatus. The inltlal 

conditions defined by 

&+,T = -0.5 cos(nr’2) and u,~,, z 0, (301 

correspond most closely to those of the experimentai 
situation although there the initial temperature 
distribution is not symmetrical about the centre of 
the vessel, and some swirling motion of the reactmp 

gaseous mixture accompanies its introduction into 
the vessel, so that the condition uIhl., E 0 applied 
here will not be appropriate. It is antlclpated that the 

main features of integrations in a spherical geometr! 

will be similar to those for the cylindrical geometry 
described here. It is hoped that more extensive 
calculations will allow quantitative comparisons with 
the experimental results to be made and reported later. 

5. COYCLUSION 

Despite the limitations ofthe model adopted, such as 
those arising from the use of the Boussinesq approxi- 
mation, which may be expected to become less 
appropriate as large temperature rises are encountered 
in explosive regimes, from the symmetry assumptions 
and from the forms of the initial conditions, it may 
safely be asserted that the modifications of the 
predictions of the classical theory demanded by the 

Inclusion of convective processes are considerably 

greater than those arising from the incorporation 01 
reactant consumption or from a consideration 01 
non-zero values of the parameter /L Earlier calcula- 

tmns (see [3] and [9]) using parameter wlues typical 
of experimental situations have shown that each elf 

the latter modifications leads to enhancements of thr 
critical 0 values of about 5 ~:r cent 31 most. 111 
contrast, the present calculations suggest that even ai 
moderate Rayleigh numbers such as 2000. the criticai 

calue of (5 may be increased b;. about 50 per cent. 
whilst at Raylcigh numbers 0(104). which ;lrc \tljl 
attainable in experimental systems. the increase ma\ 

be of 200~ 300 per cent. 
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NOTE ADDED IN PROOF of explosives in the liquid phase, 2nd Symposium on 
The results of calculations with Pr = 20 reported Chemical Problems connected with the Stability of 

by V. V. Barzykin, A. G. Merzhanov, F. 1. Dubovitsky, Explosives, Tyringe, Sweden, 1970) are in broad agree- 
E. A. Shtessel and A. S. Shteinberg (Thermal explosion ment with those for Pr = 1 presented here. 

EFFETS DE CONVECTION DANS DES GAZ EN REACTION EXOTHERMIQUE 
DANS UNE ENCEINTE 

R&sum&Par integration numtrique des equations gouvernant la dynamique des fluides on met en 
evidence les consequences de la convection qui apparait dans le cas de reactions chimiques exothermiques 
en milieu gareux confine dnns un cylindre circulaire horizontal. Les effets thermiques de la reaction sont 
represent& par une distribution de sources de chaleur avec une dependance vis a vis de la temperature selon 
la loi d‘Arrenius, mais on ne tient pas compte de la consommation des reactants. La limite d’ignition 6,, 
est une fonction fortement croissante du nombre de Rayleigh et les distributions de temperature dans 
l’enceinte ne sont pas longtemps symetriques quand apparait la convection. On obtient un bon accord 
qualitatif avec les effets convectifs observes dam des experiences faites avec d’autres geometries d’enceinte. 

KONVEKTIONSEFFEKTE IN EINEM EINGESCHLOSSENEN, EXOTHERM 
REAGIERENDEN GAS 

Zmammenfassung-Durch numerische Integration der bestimmenden hydrodynamischen Gleichungen 
mittels einer A.D. I.-Methode werden die Auswirkungen des Auftretens von Konvektion bei der exothermen 
chemischen Reaktion in einem gasfiinnigen Medium, das in einem horizontalen kreisfiirmigen Zylinder 
eingeschlossen ist, untersucht. Die thermischen Effekte der Reaktion werden durch eine Verteilung von 
Warmequellen mit Arrheniustemperaturabhangigkeit dargestellt. 

Der Verbrauch an Reaktanten wahrend der Reaktion wird vernachllssigt. Die Ziindgrenze S, steigt 
mit der Rayleigh-Zahl stark an und die Temperaturverteilungen in dem Gefass sind nicht mehr 
symmetrisch zum Zentrum, wenn Konvektion auftritt. Mit Experimenten, die andere Gefassgeometrien 

verwendeten, besteht bei der Betrachtung der Konvektionseffekte gute qualitative tjbereinstimmung. 

KQHBEKHHH B I’ABAX, 3.4KJIIOYEHHbIX B COCY& IIPII HAJIM4Hkl 
3K30TEPMBrIECKO~ PEAKHHH 

AHHoTaqllr+-C IIOMOWbIO YHCJIeHHOrO PIHTerpHpOBaHlUI OCHOBHblX ra30RHHaMWIeCKHx 

ypaBHeHId nposeaeno uccne~osanue B~EIHHHH ~0rmeKum I3 ra3oBoti cpene, 3awrmeHHoti 

B rOpVI30HTaJIbHbIfi IFpyrOBOi% UMJIJiH~p, IIPH HamIwM 3moTepmI9ecmx xlnfw~ec~~x 

peaHum%. Tennosbre @@eIETbI peaKqPIH IIpeACTaBneHbI paCnpeAeneHHeM HCT04HHKOB TCIIna 

IIPPI TeMIIepaTypHoti 3aBHCHMOCTH Appennyca, a pacxoaoM pearerrTon BO Bpem peaHqm 

IIpeHe6peraeTCFI. YCTaHOBJIeHO, YTO IIpeAen BOCIIJIaMeHeHHR 6,, FIBiIReTCR 6bICTpO BO3pa- 

cTamqeti @ymqneti wma Penen, a pacnpeaeneauu TeMnepaTypbr B cocyae np~ HanRYBH 

KOHBeHIJPiH IIepeCTaIoT 6bITb CNMMeTpWIHbIMH OTHOCkITeJIbHO IfeHTpa. nOJIyYeH0 xoI)oruee 

Ka~eCTLleHHOe ('OOTBeTCTBHe C pe3yJIbTaTaMtI EWCIIepMMeHTOB HO CBO6OJ(HOti HOHBefEqMH -B 

COCyzaX ITHOR (POpMbI. 


